Myelin Imaging in the Brain of MS Patients via Linear Combination

L. Vidarsson1, K. O. Lim2, G. Gold3, J. Pauly1
1Electrical Engineering, Stanford University, Stanford, CA, United States, 2Department of Psychiatry, University of Minnesota, Minneapolis, MN, United States, 3Dept. of Radiology, Stanford University, Stanford, CA, United States

Introduction: Magnetic Resonance Imaging is the most sensitive imaging modality to detect lesions in Multiple Sclerosis (MS) [1]. White matter has a multi-exponential T2 decay with a short T2 component (T2 ~ 10 ms), which has been associated with myelin [2]. By using linear combination (LC) myelin filtering [3,4] we find low signal intensity of short T2 components in MS lesions visible on a Fluid Attenuated Inversion Recovery (FLAIR) images.

Theory: A T2 filtered image is made using linear combination of spin echo images with different echo times. The weights of the linear combination along with the echo times are designed using convex optimization to maximize the myelin signal to noise ratio (SNR). The optimization algorithm is required to suppress extracellular white matter T2 species (T2 between 70 ms and 90 ms). In addition Cerebral Spinal Fluid (CSF) suppression (T2 between 200 ms and 5 s) is imposed [2,6]. Thus short T2 species (T2 < 20 ms) pass through the filter while long T2 species (T2 > 70 ms) are blocked. TR is varied between acquisitions to keep T1 weighting the same in all the spin echo source images. A uniform T2 profile filter is also designed using the same echo times as the short T2 filter (Fig.1) [3,4].

Methods: A GE Signa LX 1.5T scanner was used to scan 5 healthy subjects and 2 patients with known MS. For each subject 3 spin echo scans were acquired, TE=8/35.2/110 ms, TR = 698/725.2/800 ms. 24 cm FOV, Ns=256, Ny=128, 15 kHz bandwidth. The short T2 filter uses the weights 2.3/-3.8/1.5 and the uniform T2 weighting filter uses the weights 0.9/0.3/-0.2. LC fractional myelin maps were generated. For comparison a regular clinical FLAIR image TR=8s, TE =110 ms, TI = 2.2 s was also acquired. A short T2 fraction map was formed by dividing the short T2 filtered image by the uniform T2 filtered image. For each subject the fractional T2 signal was integrated over a region of interest (ROI) within MS lesions for patients and in the genu of corpus callosum in normals.

Results: Figure 2 shows the MRI images along with the fractional myelin maps. For the first patient (Fig. 2(a) and (b)), the ROI around the solid arrow had 0 to 5% short T2 signal percentage. The dashed arrow ROI had 0 to 6% short T2 signal component percentage. For the second patient (Fig. 2(c) and (d)), the solid arrow ROI had 0 to 4% short T2 signal, and the dashed arrow had 0 to 5% short T2 signal. For healthy volunteers 10% to 13% short T2 signal was measured in the genu of the corpus callosum.

Discussion: From the literature the short T2 components contribute about 10-12% of the total T2 spectrum amplitude in healthy volunteers [2,3]. On both patients the lesion low T2 percentage is far below 10%. This suggests abnormalities that may indicate demyelination. The significance of this finding needs further investigation to determine normal short T2 signal variations both in MS patients and the normal population.

References: